How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras


I remember how excited I was to get my first DSLR several years ago. My wife and I had a newborn and wanted to get better shots of our little baby than what a pocket camera could provide. So we soon found ourselves with a new-to-us Nikon D200 that produced stunning images of our precious little boy. The pictures wouldn’t win any prizes, but they were leagues beyond what we could get with our pocket camera or cell phone and that was fine with us.

However, the more I learned about cameras in the coming months, the more I started to think we had made a mistake because our camera was, I discovered, a crop-sensor model. Unbeknownst to us, we had spent hundreds of dollars on what was clearly an inferior camera! Or so I thought at the time. The truth, as is so often the case, is much more nuanced. I’ll explore it a bit in this article so you can understand the practical differences between these two types of cameras and hopefully decide which one is right for you.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

This duck is rushing to get the latest full-frame camera he read about on the internet.

Different, not better

Before I get too deep into this article I want to make one thing clear; neither crop, nor full-frame, nor medium format, nor micro-four-thirds are any better than the others. All of them are different, and each format has its strengths and weaknesses (yes, even full-frame cameras have weaknesses!) and each is ideally suited to different types of photography. Moreover, all types of cameras are capable of taking great photos. Even mobile phones, which are basically super-duper-ultra-crop sensor cameras, can take breathtaking award-winning shots that grace not only social media feeds but billboards, walls, and pages of magazines across the world.

The term crop-sensor or full-frame refers solely to the size of the imaging sensor inside a camera. A full-frame sensor is the same size as a piece of 35mm film which was, and still is, the most widely-used type of film in analog cameras. The most common size that the term crop-sensor refers to is known as APS-C, which is the same size as a piece of film from the mid-1990’s Advantix format (also called the Advanced Photo System or APS) invented by Kodak.

How the smaller sensor affects your images

Using a smaller sensor has interesting effects on things like depth of field and apparent focal length of lenses, but it’s not a subjective measure of how good or bad a camera is. Think of it like going to an all-you-can-eat buffet with different sized plates. Shooting with a full-frame camera is like taking a normal size plate to the serving area, whereas using a crop sensor camera is like using a plate that is about 30% smaller. Both will get the job done, and both are great for different types of people. So what’s all the fuss about? Understanding some of the practical differences between these two types of plates…er…cameras will help you know which type is best for you.

So what’s all the fuss about? Understanding some of the practical differences between these two types of plates…er…cameras will help you know which type is best for you.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

Crop-sensor versus Full-Frame…it’s not about which is better, but which will suit you better.

ISO performance

For years one of the immutable truths about shooting with a full-frame camera was that it automatically gave you better performance at high ISO values. While this is still mostly true today, it’s also safe to say that for a majority of practical scenarios crop-sensor cameras have picked up the slack and can hold their own fairly well when pitted against their large-sensor counterparts.

If you are looking for the ultimate in high ISO performance though, you might want to ditch that Canon Rebel and start shopping around for a 5D Mark IV or a 1DX. The reason for this discrepancy is due to physics. The pixels, or tiny individual light-sensitive bits on a camera imaging sensor, are usually larger on a full-frame camera.

Bigger buckets

For example, pretend it’s raining and you want to collect some of the water that’s falling freely in your front yard. To do so you set out 24 large buckets (so big you call them mega-buckets) next to each other and wait a few minutes for them to start filling up. Your neighbor, meanwhile, sees your plan and rushes to do the same thing but uses 24 ultra-mega-buckets that are about 30% larger than yours. When the sun comes out and the birds start to sing, who will have collected more water? I’ll give you a hint, it’s not going to be you.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

Even though you and your neighbor were both harvesting rainwater with 24 mega-buckets, hers were larger in size and therefore able to collect more water. It’s kind of the same with cameras in that a model like the Nikon D5500 has a 24-megapixel image sensor which is the same as a full-frame Nikon D750. However, since the pixels on the D750 are bigger they are more sensitive to light. So, when there’s not much light available, such as a situation where you may need to shoot at ISO 6,400 or 12,800, they do a better job of collecting the light.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

ISO 6400, crop-sensor Nikon D7100. Note how grainy much of the dark areas look, and the somewhat desaturated feel of the bright colors.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

Shooting the same scene with a full-frame Nikon D750 yields much better results, with less overall noise and cleaner colors.

Technology advances

This analogy quickly breaks down when you consider the advances in modern technology. Most crop-sensor cameras today significantly outshine their forebears from just a few years ago when shooting at ISO 3200 or 6400. The Fuji X-T1, a modern crop-sensor camera, is about equal to the full-frame Canon 5D Mark III in terms of high ISO performance. Granted the latter is a few years old and has since been bested by other full-frame cameras, but still, the point remains that today’s crop-sensor cameras are no slouch when it comes to shooting at high ISO values.

However, if you want the absolute best in terms of high ISO sensitivity, a modern full-frame camera is usually going to be your best bet. It’s not a zero-sum game though, and there are many other practical considerations to think about. Lastly, just because a camera can shoot at ISO 25,600 doesn’t mean it’s the right one for you.

Cost and Size

There is a principal of mathematics known as modus ponens which is used as a way of showing a certain thing to be true because it follows a logical progression. Basically, it’s a formal way of saying that one thing P naturally implies Q. If P is true, then Q must also be true.

Camera Size

When we apply this rule to photography we can immediately see one disadvantage of cameras with larger sensor sizes. It goes like this; full-frame sensors are larger than cropped image sensors (i.e. condition P). Larger sensors need larger camera bodies in order to compensate for the increase in sensor size (i.e. condition Q). Therefore, cameras with larger sensors are larger than cameras with smaller sensors. Quod erat demonstrandum.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

The sensor in a full-frame camera is much larger than the sensor in a crop-frame camera. Therefore, the camera itself needs to be larger too.

Price – $$$

Thus, we can see another key difference between cameras with various sensor sizes, and it’s something to keep in mind when considering which type of camera to buy. Image sensors range from the size of a tic-tac breath mint to that of a postage stamp, to a potato chip, and even larger when you consider highly specialized imaging devices like those used at NASA. These image sensors are not cheap to manufacture, which is why full-frame cameras can easily cost twice as much as their crop-sensor counterparts. If you go all the way up to medium format, with sensors that are significantly larger than full-frame, you can easily spend $10,000, $20,000, or more on the camera alone, without any lenses.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras
Crop-sensor cameras like the Nikon D3300 or the Canon Rebel T6i are smaller, less expensive, and also more portable than their full-frame counterparts. If you’re shopping for a camera, don’t need crazy-high ISO performance, and also don’t want to empty your pocketbook in the process, then a crop-sensor or micro-four-thirds camera (which has a sensor that’s about 25% as large as a full-frame camera) will suit you quite nicely.

However for many photographers, the size of their camera is of little concern, and they don’t mind the increase in size, weight, and cost that comes with venturing into the full-frame territory. Just know that bigger isn’t always better, especially because along with bigger sensors comes bigger lenses that are required to fit on them as well.

Lens Size and Selection

When considering a camera system, whether crop-sensor or full-frame, it’s not just the size of the camera that you will need to keep in mind but the size and price of the accompanying lenses as well. Lenses designed for smaller sensors are generally smaller and less expensive than lenses for full-frame cameras. A 70-200mm f/2.8 lens for full-frame cameras, which is fairly standard for many photographers, can easily cost upwards of $1500. Whereas a similar piece of glass like the Sigma 50-100mm f/1.8 lens for crop-sensor cameras will set you back about $1000. It’s even better when you look at the micro four thirds system, where lenses are significantly smaller and often less expensive than comparable full-frame models.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

The classic 70-200mm f/2.8 lens. Designed for full-frame cameras, it’s a fantastic lens that will give you great photos but it’s also expensive and heavy. Similar lenses for cameras with smaller sensors are smaller, lighter, and often cheaper.

However, one advantage of going with a full-frame system is the sheer quantity and variety of lenses that you have available at your disposal. Since all 35mm film cameras ever made are full-frame, you can use most of those lenses on modern cameras and sometimes you don’t even need an adapter. Many modern full-frame cameras are capable of autofocusing with older lenses too, making it easy to find high-quality glass that will suit your needs if you don’t necessarily need to buy brand-new. There is a growing selection of lenses for crop-sensor cameras, particularly in the micro-four-thirds ecosystem. But if you need access to the largest possible array of lenses than a full-frame camera might just be your best bet.

Lens Performance: Depth of Field and Focal Length

At this point, it might sound like I’m less than enthusiastic about full-frame cameras, but I promise you that’s not the case. I shoot with both crop-sensor and full-frame gear. There is a reason why full-frame cameras and lenses are highly sought-after despite their larger size, heavier weight, and greater cost. Most glass made for full-frame systems costs more and weighs more because it is higher quality. They also produce superior results compared to some of the cheaper lenses for smaller cameras. (Note that I said most, not all. Certainly, there are many outstanding lenses for APS-C and micro-four-thirds cameras. But it’s safe to say that lenses made for full-frame cameras are, for the most part, going to produce outstanding results.)

There’s also the fact that when shooting full-frame you get the benefit of a shallower depth of field. For example, portrait photographers often prefer shallow depth of field. When shooting with a large sensor and a 70-200mm f/2.8 lens you can get results that are difficult to replicate with crop-sensor gear. The math is a bit tricky, but shooting a subject at 200mm with an aperture of f/2.8 on a full-frame camera gives very different results than using a crop-sensor camera.


How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

Shot with a 200mm lens on a full-frame camera.

I shot the photo above at 200mm with my full-frame camera, but it would have been quite different if I shot it on my crop-sensor camera. A 200mm lens behaves like a 300mm lens when mounted on an APS-C camera. That means I would have had to move much farther back to get this same composition and therefore would have significantly increased the depth of field. The background would not have been as blurry, and the pillar behind the boy would have been more in focus as well.

85mm lens on full-frame versus crop-sensor

Here’s a photo that I took with my crop-sensor D7100, using an 85mm lens at f/4.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

85mm lens at f/4 shot with a crop-sensor camera.

After I took that picture I put the same 85mm lens on my full-frame D750 and while standing in the same spot, took the following image:

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

85mm lens at f/4 on full-frame, same physical position as the first picture.

It looks like I zoomed out, but in fact, I was using the exact same lens but on a full-frame camera. To get a picture like the one I shot initially, I had to move forward which then changed the background elements and also gave me a shallower depth of field with a background that was more out of focus.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

85mm lens at f/4 shot on a full-frame camera.

The reason this happens is that with the former you are getting a picture that accurately reflects a lens’s true focal length, whereas on a crop sensor camera you are seeing a cropped version of what the lens sees.


This picture of the Edmond Low Library on the Oklahoma State University campus was taken with my 35mm lens on my Nikon D7100 (crop-sensor).

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

35mm lens at f/4 on a crop-sensor camera.

I took the next picture sitting in the exact same spot on the library lawn, using literally the exact same 35mm lens mounted to my full-frame Nikon D750.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

35mm lens at f/4 on a full-frame camera.

Nothing changed here except the camera on which the lens was mounted. The shot of the library on my crop-sensor camera is, in a very real sense, a cropped version of what you see on a full-frame camera. The implications of this are profound since it means a 35mm lens on a crop-sensor body actually behaves more like a 55mm lens. (The exact value varies just a bit depending on whether you shoot Nikon or Canon, which each use a slightly different crop factor.)

Implications – how it affects you

So what are the practical implications of this phenomenon? It means that if you are primarily interested in landscape, architecture, or other shots that are suited for wider focal lengths, a full-frame camera will generally be a good choice. However, if you like to shoot wildlife or sports, a crop-sensor camera can give you a lot of extra reach with your lenses and effectively transform a 300mm telephoto lens into a 450mm birdwatching, goal-scoring powerhouse.

How to Understand the Differences Between Full-Frame Versus Crop-Sensor Cameras

I like to do close-up photography on my full-frame D750 not because it’s objective a better camera, but because there are specific features about it that I like for this type of photography.

The Final Word

After examining various differences between crop and full-frame cameras, I hope it’s clear that neither one is inherently better. Both are uniquely suited to different types of photographic tasks.

I’m always eager to hear from the dPS community on topics like this though, and if you have thoughts you would like to share on this issue please leave them in the comments below. Which system do you use and why? Are you satisfied, or are you considering switching from one format to another?

Do you have any questions after reading this article? Post a reply and in the meantime, no matter what type of camera you have, remember to get out there and use it to take pictures you enjoy.

Read more from our Cameras & Equipment category

Simon Ringsmuth is an educational technology specialist at Oklahoma State University and enjoys sharing his enthusiasm for photography on his website and podcast at Weekly Fifty. He and his brother host a monthly podcast called Camera Dads where they discuss photography and fatherhood, and Simon also posts regularly to Instagram where you can follow him as @sringsmuth.

  • Erik Westby

    Some good comparisons. Thanks for the article!

    But for the wide angle argument, you could just buy a wider angle lens that’s built for your crop sensor camera … you don’t have to buy a Full Frame camera to achieve a wide angle. I have a beautiful Tokina 11-16mm for my crop sensor Canon 80D that, frankly, is just too wide for most of my work. I can get almost everything I need, and without vignetting, from my Sigma 17-50mm lens. (I shoot professional documentary style and commercial video, primarily.)

    Also, with a crop sensor camera you do sacrifice some of the shallow depth-of-field due to the physics of the lens and sensor size, but you can compensate somewhat with a longer lens and/or a faster lens. I’m able to achieve a really nice separation between the interview subject and the background by zooming my 17-50mm all the way in to 50mm, and opening to the full 2.8 f-stop limit on the lowest ISO (100 on this camera). I use a variable ND filter to dial in exposure, allowing me to keep the iris wide open in any lighting conditions. And in some cases I use a Canon 50mm prime lens, which I can open all the way to 1.8 for an even shallower depth-of-field.

    Keep shooting, everyone!

  • Vladek

    hopeless review !!!

  • How so? We didn’t claim this was a review. More of an overview of the differences of different kinds of cameras.

  • sly

    great written article which can help many camera buyer. However I am always surprised and I think is a pity to see the same wrong technical explanations about light gathering and this outdated concept of “the ff camera has bigger pixel so are better in low light”.
    The pixel size on a detector have an influence but this is not what dominate the performance difference between a crop and full frame in therm of light gathering.
    The main difference is the diameter of the lens used by ff (larger) than the one used for crop (smaller) that give the same field of view for both system:
    – a 50mm f/2 on a full frame has a diaphragm diameter of 25mm
    – a 35mm f/2 on a crop has a diaphragm diameter of 17.5mm
    This lead to one stop less light on the system than use the smaller lens (for same field of view). That not the pixel size.

    The pixel size has influence but is so much less than the size paradigme. If you take your bucket analogy, and take square buckets (as pixels are). On the same surface use a/ large buckets or b/ buckets with half of the size (-> 4 time more pixel to pave the same surface) they will collect almost the same water because they have the same total surface, only the junction between bucket are lost and higher in case b). But this is reduce to minimal in modern detector (micro-lenses front of each pixels, gap very small compare to the collecting area). Also the advantage of one big pixel instead of 4 is that there is only one read out noise in the first case and square-root-of(4)=2 times in the second case. But again this is negligible in most photographic condition, because most of noise is dominated by the “photon noise” not the pixel noise and also small pixel tend to have lower read out noise.
    The “bigger pixel are better” is an old notion, that date from more 10 years ago when pixels were separated by not negligible gap and when pixels had much higher read-out noise than now.
    If you need more of precision :


  • Ron Olivier

    I chose an APS-C crop sensor over a mirrorless because of sensor size. I chose it over a full frame because of size/weight and cost. Two years in, I’m still extremely happy with my purchase. As a casual hobbyist, I don’t specialize in any one area of photography, so it’s nice to have a camera that is somewhat unobtrusive on city streets, but can also shoot a decent cityscape/landscape, do some night photography as well as take great candid portraits of my grandchildren.
    Sure I would love to have the benefits of a full-frame camera, and I would love the state-of the art features found on mirrorless cameras, as well as their smaller weight and size. But I did my homework diligently, and got the camera that fit my lifestyle, my experience level, and my budget. So rather than obsessing on what I gave up in each case, I instead focused on learning to use what I have to the best of its ability. Two years in, and that quest is still not complete!!!
    Thanks for a fine article.

  • Jack Graham

    I am planning to buy new camera so I’m searching first what best to buy, and here is this article that tackle all my need to know. Nice post it helps me choosing one.

  • Peter Cleife

    What is a Rebel, some sort of EOS D?

  • Crop sensor – APS-C

  • glad you found it helpful!

  • Interesting. But FYI I have the Fuji X-T1 mirrorless camera and it is APS-C as well. Most mirrorless are that size now unless you go to the smaller 4 thirds cameras like Olympus.

  • Ron Olivier

    Yes, that’s right Darlene. The two mirrorless cameras I was most interested in at the time were (I think the model numbers are correct) the Olympus OEM-10 and the Panasonic GX-7, both 4/3 cameras. The statement was in regard to the choice I made at that time. I do remember a Samsung mirrorless that had an APS-C sensor, too. I should have specified that they were 4/3 cameras, and not simply ‘mirrorless’.

  • connor

    too long didn’t read

  • Hector Spinelli

    Excellent document very conceptually oriented. I move to Full Frame D750 from D5300 DX. My lens is 24 x 120. I need to buy one new but I am doubtfull between the 28 x 300 and the 18×300. I like to catch landscapes and urban images. So I do really appreciate two lines regarding which the best lens option.

  • PDL

    I am astounded that the following was stated:
    “Using a smaller sensor has interesting effects on things like depth of field and apparent focal length of lenses, but it’s not a subjective measure of how good or bad a camera is.:
    Please note: yes I am going to Yell here.
    The Field of View – FOV – changes.
    Thought experiment:
    Take a given focal length lens and shoot a cube that projects an image that is 10mm in height and width on a 35mm sensor. From the same spot, using the same lens, shoot the same cube with a APS-C body. What will the size of the cube be ON THE SENSOR……..
    Wait for it

    THE SAME 10mm. Only the field of view will change between the two images – the focal length of the lens DOES NOT CHANGE BY CHANGING the

  • You’re exactly right about that, which is why I said “apparent focal length.” A 50mm lens is a 50mm lens no matter whether it’s mounted to a crop or full-frame camera. But when you mount that lens on a crop camera it behaves *kind of* like a 75mm lens due to the smaller portion of the image circle that’s captured on the sensor. (and no, it doesn’t actually become a 75mm lens. Focal length doesn’t change.)

  • PDL

    Then why not be explicit and say field of view. Even in the comments below there is confusion over focal length and 35mm sensors compared to cropped sensors. Why continue to use incorrect analogies that only confuse and lead beginners down this rabbit hole?

  • KC

    This is one of those topics that can make your head spin because of “market speak”. All cameras are full frame. It’s market speak for “35mm sized sensor”, as if that’s a “gold standard”. For example, a Micro Four Third camera is full frame to the Micro Four Thirds spec. Where does this leave medium format digital cameras? “Fuller Frame”, or “Crop Sensor” compared to film based medium format cameras?

    The “crop sensor” madness started when some camera manufacturers switched to digital but kept the same lens mount so that legacy lenses could be used. Suddenly the “normal” 50mm on their 35mm bodies were now short telephotos on their digital bodies. 75mm or 80mm depending on the sensor. Suddenly a 35mm lens was closer to “normal” (52.5mm or 56mm), whatever “normal” is. Maybe 28mm? That’s now 42mm or 44.8mm on a crop sensor camera, depending on the camera.

    What we’re talking about is focal length and magnification. That’s math, not marketing. Same for depth of field.

    As for sensor sizes and image quality, that’s constantly improving and will continue to. The computing power inside the camera is getting much better.

    Maybe I see this from a different perspective since I’ve handled so many different formats in film. I just think of the respective lenses in terms of “wide angle and telephoto” and magnifications. That carried over to digital. Curiously, we don’t think “crop sensor” in video.

  • John Vanderburg

    Too bad for you. It provided good information.

  • aar_cee

    What advantage does higher ISO gives to a photographer? Which conditions ask for this higher ISO? Can u please highlight. I am a learner and novice in this field.

  • Mike Larose

    Technically ISO is a combination of ASA and DIN. ASA is the North America way to express the speed of a film, and DIN was the German way. They have been standardised to refer to ISO. In practical terms ISO is the same as the old ASA standard.

    A higher ISO number allows you to shoot in less light. The sensor is more sensitive to light when set to a higher number. If you like to shoot night images, or indoors without flash, you can set the ISO higher. The trade off is, at higher ISO numbers you get more noise. If film this presented as grain. In digital imaging it is looks like soft little blocks. Especially in dark areas. It can be reduced a bit with software, with varying results.

    The other factor that you have to be aware of is lens speed. Lenses with larger apertures (f number) allow more light in. Therefore you could use a faster shutter speed, hence the term ‘fast’. You could also use a higher ISO, instead of increasing shutter speed.

    The other consideration for ISO is the ability to stop motion. Higher ISO speeds allow faster shutter speeds. This improves the ability to stop motion. If you’ve seen motion blur, it is usually caused by slower shutter speeds. Sometimes intentionally.

    That’s the short answer 🙂

  • Mike Larose

    Isn’t there no real advantage to a crop sensor? The extra apparent focal lengths you enjoy with crop sensors can be achieved by cropping a full frame image in software. What you can’t do though with a crop sensor is get good wide angle shots, without buying very wide lenses. Ultra wide lenses for crop sensors are behind their full frame wide cousins. This is where full frame leave crop sensors in the dust IMHO.

    I think money, more than size prevents more people from going full frame. And further up the chain it just gets ridiculous, for most, when it comes to cost.

    I’ll have to humbly disagree. I think full frame is better.

  • cacamilisseacht

    24mp cropped FF would be less mp than 24mp apsc, not really better. As for the money in the end, there is not a massive difference in price between a good FF camera and a good APS-C camera, the D500 is more expensive than the D750, not a massive advance in technology. As for lenses, Af-D lenses work on both systems and ultra wide angles are cheaper for Aps-c no cheap options for full frame. For beginners they can get a cheap DSLR for €100 and work their way up. And if you want really big prints get a shoebox and some photo paper lol

  • I see your point, but I still think each has their pluses and minuses. For example wildlife photographers are a segment that generally appreciates crop-sensor cameras for the extra reach. It’s true that you can take a 24mp FF image and crop it to get the exact same image you would get from APS-C, but the resulting image would be about 16 megapixels. If you shot the initial image with APS-C it would be 24 megapixels, which you could then crop down even more and still have great results.

  • motahar

    CONGRATULATIONS ! good explanation to comparison on full-frame & crop sensor cameras.It was cute & useful for me.THNX,,,,,

Join Our Email Newsletter

Thanks for subscribing!

DPS offers a free weekly newsletter with: 
1. new photography tutorials and tips
2. latest photography assignments
3. photo competitions and prizes

Enter your email below to subscribe.
Get DAILY free tips, news and reviews via our RSS feed